Seasonal Climate of the Tropical Atlantic Sector in the NCAR Community Climate System Model 3: Error Structure and Probable Causes of Errors

Author:

Chang Ching-Yee1,Carton James A.1,Grodsky Semyon A.1,Nigam Sumant1

Affiliation:

1. Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract The Community Climate System Model version 3 (CCSM3) has a dipolelike pattern with a cold bias in the northern Tropics and a warm bias in the southeastern Tropics, which is reminiscent of the observed pattern of climate variability in boreal spring. Along the equator, in contrast, in boreal spring CCSM3 exhibits striking westerly winds with easterly winds in the upper troposphere, in turn reminiscent of the observed pattern of climate variability in boreal summer. The westerly winds cause a deepening of the eastern thermocline that keeps the east warm despite enhanced coastal upwelling. Thus, the bias in the seasonal cycle of the coupled model appears to project at least partially onto the spatial patterns of natural climate variability in this sector. Information about the origin of the bias in CCSM3 is deduced from a comparison of CCSM3 with a simulation using specified historical SST to force the Community Atmospheric Model version 3 (CAM3). The patterns of bias in CAM3 resemble those apparent in CCSM3, including the appearance of substantially intensified subtropical bands of sea level pressure (SLP), indicating that the problem may be traced to difficulties in the atmospheric component model. Positive SLP bias also appears in the western tropical region, which may be related to deficient Amazonian precipitation. The positive SLP bias seems to be the cause of the anomalous westerly trade winds in boreal spring, and those in turn appear to be responsible for the anomalous deepening of the thermocline in the southeastern Tropics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3