Terrestrial Influence on the Annual Cycle of the Atlantic ITCZ in an AGCM Coupled to a Slab Ocean Model*

Author:

Biasutti M.1,Battisti D. S.1,Sarachik E. S.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract An atmospheric GCM coupled to a slab ocean model is used to investigate how temperature and precipitation over South America and Africa affect the annual cycle of the Atlantic ITCZ. The main conclusion of this study is that variations in precipitation and temperature forced by the annual cycle of insolation over the continents are as important as variations in insolation over the ocean and in ocean heat transport convergence in forcing the annual march of the Atlantic ITCZ observed in the control simulation. The processes involved are as follows. The intensity of precipitation over land affects the stability of the atmosphere over the tropical Atlantic Ocean, and thus modulates the intensity of deep convection and convergence in the ITCZ. Both the imposed changes in land precipitation and the subsequent changes in the strength of the ITCZ drive surface wind anomalies, thereby changing the meridional gradient of SST in proximity of the basic-state ITCZ. Finally, atmosphere–ocean feedbacks cause the ITCZ to be displaced meridionally. Seasonal changes in surface temperature in the Sahara also have a strong influence on the position of the Atlantic ITCZ. Cold wintertime temperatures produce high surface pressure anomalies over Africa and into the tropical North Atlantic and drive stronger trade winds, which cool the North Atlantic by evaporation. The coupled interactions between the SST, the wind, and the ITCZ intensify the anomalies in the equatorial region, causing the southward displacement of the ITCZ in boreal spring.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characteristics of Korean ski culture and the suggestions for developing Korean ski industry;Korean Journal of Lesure, Recreation & Park;2022-12-31

2. Speleothems of South American and Asian Monsoons Influenced by a Green Sahara;Geophysical Research Letters;2020-11-13

3. Stronger zonal convective clustering associated with a wider tropical rain belt;Nature Communications;2019-09-19

4. State of the Art;Interdecadal Changes in Ocean Teleconnections with the Sahel;2018-11-28

5. Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ;Climate Dynamics;2016-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3