Implementation of All-Sky Assimilation of Microwave Humidity Sounding Channels in Environment Canada’s Global Deterministic Weather Prediction System

Author:

Bani Shahabadi Maziar1,Buehner Mark1

Affiliation:

1. a Meteorological Research Division, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Abstract

Abstract Cloud-affected microwave humidity sounding radiances were excluded from assimilation in the hybrid four-dimensional ensemble–variational (4D-EnVar) system of the Global Deterministic Prediction System (GDPS) at Environment and Climate Change Canada (ECCC). This was due to the inability of the current radiative transfer model to consider the scattering effect from frozen hydrometeors at these frequencies. In addition to upgrading the observation operator to RTTOV-SCATT, quality control, bias correction, and 4D-EnVar assimilation components are modified to perform all-sky assimilation of Microwave Humidity Sounder (MHS) channel 2–5 observations over ocean in the GDPS. The input profiles to RTTOV-SCATT are extended to include liquid cloud, ice cloud, and cloud fraction profiles for the simulation and assimilation of MHS observations over water. There is a maximum (35%) increase in the number of channel 2 assimilated MHS observations with smaller increases for channels 3–5 in the all-sky experiment compared to the clear-sky experiment, mostly because of newly assimilated cloud-affected observations. The standard deviation (stddev) of difference between the observed global positioning system radio occultation (GPSRO) refractivity observations and the corresponding simulated values using the background state was reduced in the lower troposphere below 9 km in the all-sky experiment. Verifications of forecasts against the radiosonde observations show statistically significant reductions of 1% in the stddev of error for geopotential height, temperature, and horizontal wind for the all-sky experiment between 72- and 120-h forecast ranges in the troposphere in the Northern Hemisphere domain. Verifications of forecasts against ECMWF analyses also show small improvements in the zonal mean of stddev of error for temperature and horizontal wind for the all-sky experiment between 72- and 120-h forecast ranges. This work was planned for operational implementation in the GDPS in fall 2023.

Publisher

American Meteorological Society

Reference18 articles.

1. Multiple-scattering microwave radiative transfer for data assimilation applications;Bauer, P.,2006

2. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation;Bauer, P.,2010

3. Local ensemble transform Kalman filter with cross validation;Buehner, M.,2020

4. Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system;Buehner, M.,2015

5. The assimilation of microwave humidity sounder observations in all-sky condition;Candy, B.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3