Affiliation:
1. Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
Abstract
Abstract
Near-diurnal internal waves were observed in velocity and shear measurements from a shipboard survey along a 35-km section of the Kaena Ridge, northwest of Oahu. Individual waves with upward phase propagation could be traced for almost 4 days even though the ship transited approximately 20 km. Depth–time maps of shear were dominated by near-diurnal waves, despite the fact that Kaena Ridge is a site of considerable M2 barotropic-to-baroclinic conversion. Guided by recent numerical and observational studies, it was found that a frequency of ½M2 (i.e., 24.84-h period) was consistent with these waves. Nonlinear processes are able to transfer energy within the internal wave spectrum. Bicoherence analysis, which can distinguish between nonlinearly coupled waves and waves that have been independently excited, suggested that the ½M2 waves were nonlinearly coupled with the dominant M2 internal tide only between 525- and 595-m depth. This narrow depth range corresponded to an observed M2 characteristic emanating from the northern edge of the ridge. The observations occurred in close proximity to the internal tide generation region, implying a rapid transfer of energy between frequencies. Strong nonlinear interactions seem a likely mechanism. Nonlinear transfers such as these could complicate attempts to close local single-constituent tidal energy budgets.
Publisher
American Meteorological Society
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献