Affiliation:
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
2. Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Abstract
Abstract
To develop a finescale dataset for the purpose of analyzing historical climatic change over the Tibet Plateau (TP), a high-resolution regional climate simulation for 1979–2011 was conducted using the Weather Research and Forecasting (WRF) Model driven by the ERA-Interim (ERA-Int). This work evaluates the high-resolution (30 km) WRF simulation in terms of annual variation, spatial structure, and 33-yr temporal trends of surface air temperature (Tair) and precipitation (Prec) over the TP, with reference to station observations. Another focus is on the examination of the height–temperature relationship. Inheriting from its forcing, the WRF simulation presents an apparent cold bias in the TP. The cold bias is largely reduced by a lapse rate correction of the simulated surface air temperature with help of the station and model elevations. ERA-Int presents the same sign of Tair and Prec trends as the observations, but with smaller magnitude, especially in the dry season. Compared to its forcing, the WRF simulation improves the simulation of the annual cycles and temporal trends of Tair and Prec in the wet season. In the dry season, however, there is hardly any improvement. The observed Tair presents a downward linear trend in the lapse rate. This feature is examined in the WRF simulation in comparison to ERA-Int. The WRF simulation captures the observed lapse rate and its temporal trend better than ERA-Int. The decreasing lapse rate over time confirms that Tair change in the TP is elevation dependent.
Publisher
American Meteorological Society
Cited by
189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献