Affiliation:
1. Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
2. The Administrative Centre for China’s Agenda 21, Beijing, China
Abstract
AbstractBoth internal solitary waves (ISWs) and mesoscale eddies are ubiquitous in the northern South China Sea (SCS). In this study, the authors examine the impacts of mesoscale eddies on the ISWs transiting the northern SCS deep basin that evolve from the steepening internal tide generated in the Luzon Strait, using in situ data collected from a specifically designed mooring array. From November 2013 to January 2014, an energetic mesoscale eddy pair consisting of one anticyclonic eddy (AE) and one cyclonic eddy (CE) propagated across the mooring array. Observations revealed that the amplitude, propagation direction, and speed of the transbasin ISWs were significantly modulated by the eddy pair. When the moorings were covered by the southern portion of the AE, the ISW amplitudes decreased by as much as 67% because of the thermocline deepening along the wave direction and the energy divergence along the wave front. When the moorings were covered by the northern portions of both eddies, the amplitude of ISWs also decreased but to a relatively smaller degree. ISWs propagated the fastest inside the southern portion of the AE, where both the thermocline deepening and eddy currents enhanced the propagation speed of ISWs. Under the influence of the AE (CE) core, ISWs propagated more northward (southward) than usual. The observational results reported here highlight the importance of resolving mesoscale eddies in circulation–internal wave coupled models to accurately predict kinematic characteristics of ISWs.
Funder
Sanya Institute of Deep-Sea Science and Engineering
National Natural Science Foundation of China
National Key Basic Research Program of China
National High Technology Research and Development Program of China
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
NSFC-Shandong Joint Fund for Marine Science Research Centers
Global Change and Air-Sea Interaction Project
National Key Scientific Instrument and Equipment Development Project
Publisher
American Meteorological Society
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献