Examining Modulations of Internal Tides within An Anticyclonic Eddy Using a Wavelet-Coherence Network Approach

Author:

Lim Gyuchang1,Park Jong-Jin12ORCID

Affiliation:

1. Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea

2. School of Earth System Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Interactions between internal tides and mesoscale eddies are an important topic. However, examining modulations of internal tides inside a mesoscale eddy based on observations is difficult due to limited observation duration and inaccurate positioning within the eddy. In order to overcome these two practical limitations, we use the active navigation capability of underwater gliders to conduct measurements inside the targeted eddy and utilize the wavelet approach to investigate modulations of internal tides with diurnal and semidiurnal periods inside the eddy. Based on the wavelet’s frequency–time locality, we construct scale-specific networks via wavelet coherence (WC) from multivariate timeseries with a small sample size. The modulation of internal tides is then examined in terms of temporal evolutionary characteristics of the WC network’s topological structure. Our findings are as follows: (1) the studied eddy is vertically separated into two layers, the upper (<400 m) and lower (>400 m) layers, indicating that the eddy is surface intensified; (2) the eddy is also horizontally divided into two domains, the inner and outer centers, where the modulation of internal tides seems to actively occur in the inner center; and (3) diurnal internal tides are more strongly modulated compared to semidiurnal ones, indicating the influence of spatial scales on the strength of interactions between internal tides and eddies.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3