Three-Dimensional Salt Dynamics in Well-Mixed Estuaries: Influence of Estuarine Convergence, Coriolis, and Bathymetry

Author:

Wei Xiaoyan1,Kumar Mohit2,Schuttelaars Henk M.2

Affiliation:

1. Applied Mathematics, Delft University of Technology, Delft, Netherlands, and National Oceanography Centre, Liverpool, United Kingdom

2. Applied Mathematics, Delft University of Technology, Delft, Netherlands

Abstract

AbstractA semianalytical three-dimensional model is set up to dynamically calculate the coupled water motion and salinity for idealized well-mixed estuaries and prognostically investigate the influence of each physical mechanism on the residual salt transport. As a study case, a schematized estuary with an exponentially converging width and a channel–shoal structure is considered. The temporal correlation between horizontal tidal velocities and tidal salinities is the dominant process for the landward residual salt transport. The residual salt transport induced by residual circulation is locally significant, but the induced salt transport integrated over the cross section is small. The impacts of the estuarine geometry, Coriolis force, and bathymetry on the salt dynamics are studied using three dedicated experiments, in which the impact of each of these factors is studied separately. To assess the impact of width convergence, a convergent estuary without bathymetric variations or Coriolis force is considered. In this experiment, the temporal correlation between tidal velocities and salinities is the only landward salt transport process. In the second experiment, Coriolis effects are included. This results in a significant residual salt transport cell due to the advection of the tidally averaged salinity by residual circulation, with salt imported into the estuary from the left side and exported on the right (looking seaward). In the last experiment, a lateral channel–shoal structure is included while the Coriolis effects are excluded. This results in a significant landward salt transport through the deeper channel and a seaward salt transport over the shoals due to the advection of the tidally averaged salinity by residual circulation.

Funder

China Scholarship Council

Stichting voor de Technische Wetenschappen

Netherlands Organisation for Scientific Research (NWO) and the Chinese Organisation for Scientific Research

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3