A Numerical Study of Salt Fluxes in Delaware Bay Estuary

Author:

Aristizábal María1,Chant Robert1

Affiliation:

1. Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

Abstract The results of a numerical study of Delaware Bay using the Regional Ocean Modeling System (ROMS) are presented. The simulations are run over a range of steady river inputs and used M2 and S2 tidal components to capture the spring–neap variability. Results provide a description of the spatial and temporal structure of the estuarine exchange flow and the salinity field, as well the along-channel salt flux in the estuary. The along-channel salt flux is decomposed into an advective term associated with the river flow, a steady shear dispersion Fe associated with the estuarine exchange flow, and a tidal oscillatory salt flux Ft. Time series of Fe and Ft show that both are larger during neap tide than during spring. This time variability of Ft, which is contrary to existing scalings, is caused by the lateral flows that bring velocity and salinity out of quadrature and the stronger stratification during neap tide, which causes Ft to be enhanced relative to spring tide. A fit for the salt intrusion length L with river discharge Q for a number of isohalines is performed. The functional dependences of L with Q are significantly weaker than Q−1/3 scaling. It is concluded that the response of the salt field with river discharge is due to the dependence of Fe and Ft with Q and the relative importance of Ft to the total upstream salt flux: as river discharge increases, Fe becomes the dominant mechanism. Once Fe dominates, the salt field stiffens because of a reduction of the vertical eddy viscosity with increasing Q.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3