Submesoscale Instabilities in Mesoscale Eddies

Author:

Brannigan Liam1,Marshall David P.2,Naveira Garabato Alberto C.3,Nurser A. J. George4,Kaiser Jan5

Affiliation:

1. Department of Meteorology, Stockholm University, Stockholm, Sweden, and University of Southampton, National Oceanography Centre, Southampton, and Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

2. Department of Physics, University of Oxford, Oxford, United Kingdom

3. University of Southampton, National Oceanography Centre, Southampton, United Kingdom

4. National Oceanography Centre, Southampton, United Kingdom

5. Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Abstract

AbstractSubmesoscale processes have been extensively studied in observations and simulations of fronts. Recent idealized simulations show that submesoscale instabilities also occur in baroclinic mesoscale cyclones and anticyclones. The instabilities in the anticyclone grow faster and at coarser grid resolution than in the cyclone. The instabilities lead to larger restratification in the anticyclone than in the cyclone. The instabilities also lead to changes in the mean azimuthal jet around the anticyclone from 2-km resolution, but a similar effect only occurs in the cyclone at 0.25-km resolution. A numerical passive tracer experiment shows that submesoscale instabilities lead to deeper subduction in the interior of anticyclonic than cyclonic eddies because of outcropping isopycnals extending deeper into the thermocline in anticyclones. An energetic analysis suggests that both vertical shear production and vertical buoyancy fluxes are important in anticyclones but primarily vertical buoyancy fluxes occur in cyclones at these resolutions. The energy sources and sinks vary azimuthally around the eddies caused by the asymmetric effects of the Ekman buoyancy flux. Glider transects of a mesoscale anticyclone in the Tasman Sea show that water with low stratification and high oxygen concentrations is found in an anticyclone, in a manner that may be consistent with the model predictions for submesoscale subduction in mesoscale eddies.

Funder

Natural Environment Research Council

Wenner-Gren Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3