A Regional Modeling Study of Climate Change Impacts on Warm-Season Precipitation in the Central United States*

Author:

Bukovsky Melissa S.1,Karoly David J.2

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Abstract

Abstract In this study, the Weather Research and Forecasting (WRF) model is employed as a nested regional climate model to dynamically downscale output from the National Center for Atmospheric Research’s (NCAR’s) Community Climate System Model (CCSM) version 3 and the National Centers for Environmental Prediction (NCEP)–NCAR global reanalysis (NNRP). The latter is used for verification of late-twentieth-century climate simulations from the WRF. This analysis finds that the WRF is able to produce precipitation that is more realistic than that from its driving systems (the CCSM and NNRP). It also diagnoses potential issues with and differences between all of the simulations completed. Specifically, the magnitude of heavy 6-h average precipitation events, the frequency distribution, and the diurnal cycle of precipitation over the central United States are greatly improved. Projections from the WRF for late-twenty-first-century precipitation show decreases in average May–August (MJJA) precipitation, but increases in the intensity of both heavy precipitation events and rain in general when it does fall. A decrease in the number of 6-h periods with rainfall accounts for the overall decrease in average precipitation. The WRF also shows an increase in the frequency of very heavy to extreme 6-h average events, but a decrease in the frequency of all events lighter than those over the central United States. Overall, projections from this study suggest an increase in the frequency of both floods and droughts during the warm season in the central United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3