Understanding the Cascade: Removing GCM Biases Improves Dynamically Downscaled Climate Projections

Author:

Rahimi Stefan12ORCID,Huang Lei1,Norris Jesse1ORCID,Hall Alex1,Goldenson Naomi1ORCID,Risser Mark3ORCID,Feldman Daniel R.3ORCID,Lebo Zachary J.4,Dennis Eli1,Thackeray Chad1ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences Center for Climate Science University of California Los Angeles Los Angeles CA USA

2. Department of Atmospheric Science University of Wyoming Laramie WY USA

3. Earth and Environmental Sciences Area Lawrence Berkeley National Laboratory Berkeley CA USA

4. School of Meteorology University of Oklahoma Norman OK USA

Abstract

AbstractPolarization surrounding bias correction (BC) in creating climate projections arises from its lack of physicality. Here, we perform and analyze 18 dynamical downscaling simulations (with and without BC) to better understand the physical impacts of BC, applied before downscaling, on regional climate output across the western United States. Without BC, downscaled precipitation is systematically and unrealistically wet biased compared to a hierarchy of observationally based datasets over the 1980–2014 period due to cascading mean‐state Global Climate Model (GCM) biases: (a) overly strong lower‐tropospheric lapse rates (5 K/km), (b) overly cold (2 K) tropospheric temperatures, and (c) anomalous mid‐tropospheric cyclonic vorticity advection. With BC, downscaled precipitation (snow) biases are virtually eliminated (halved). Identified GCM biases are common to the broader Coupled Model Intercomparison Project ensemble. Physical effects of BC on the quality of the regionalized projections, pending an evaluation of BC's distortion of the downscaled climate response, may motivate its broader application by dynamical downscalers.

Funder

Strategic Environmental Research and Development Program

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3