Potential Impact of the Tropical Indian Ocean–Indonesian Seas on El Niño Characteristics*

Author:

Annamalai H.1,Kida Shinichiro2,Hafner Jan1

Affiliation:

1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

2. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, and Earth Simulator Center, Japan Agency for Marine Earth Science and Technology, Yokohama, Japan

Abstract

Abstract Diagnostics performed with twentieth-century (1861–2000) ensemble integrations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1) suggest that, during the developing phase, El Niño events that co-occur with the Indian Ocean Dipole Zonal Mode (IODZM; class 1) are stronger than those without (class 2). Also, during class 1 events coherent sea surface temperature (SST) anomalies develop in the Indonesian seas that closely follow the life cycle of IODZM. This study investigates the effect of these regional SST anomalies (equatorial Indian Ocean and Indonesian seas) on the amplitude of the developing El Niño. An examination of class 1 minus class 2 composites suggests two conditions that could lead to a strong El Niño in class 1 events: (i) during January, ocean–atmosphere conditions internal to the equatorial Pacific are favorable for the development of a stronger El Niño and (ii) during May–June, coinciding with the development of regional SST anomalies, an abrupt increase in westerly wind anomalies is noticeable over the equatorial western Pacific with a subsequent increase in thermocline and SST anomalies over the eastern equatorial Pacific. This paper posits the hypothesis that, under favorable conditions in the equatorial Pacific, regional SST anomalies may enable the development of a stronger El Niño. Owing to a wealth of feedbacks in CM2.1, solutions from a linear atmosphere model forced with May–June anomalous precipitation and anomalous SST from selected areas over the equatorial Indo-Pacific are examined. Consistent with our earlier study, the net Kelvin wave response to contrasting tropical Indian Ocean heating anomalies cancels over the equatorial western Pacific. In contrast, Indonesian seas SST anomalies account for about 60%–80% of the westerly wind anomalies over the equatorial western Pacific and also induce anomalous precipitation over the equatorial central Pacific. It is argued that the feedback between the precipitation and circulation anomalies results in an abrupt increase in zonal wind anomalies over the equatorial western Pacific. Encouraged by these results, the authors further examined the processes that cause cold SST anomalies over the Indonesian seas using an ocean model. Sensitivity experiments suggest that local wind anomalies, through stronger surface heat loss and evaporation, and subsurface upwelling are the primary causes. The present results imply that in coupled models, a proper representation of regional air–sea interactions over the equatorial Indo-Pacific warm pool may be important to understand and predict the amplitude of El Niño.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3