Dominant Anomaly Patterns in the Near-Surface Baroclinicity and Accompanying Anomalies in the Atmosphere and Oceans. Part II: North Pacific Basin

Author:

Nakamura Mototaka1,Yamane Shozo1

Affiliation:

1. Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan

Abstract

Abstract Variability in the monthly-mean flow and storm track in the North Pacific basin is examined with a focus on the near-surface baroclinicity. Dominant patterns of anomalous near-surface baroclinicity found from empirical orthogonal function (EOF) analyses generally show mixed patterns of shift and changes in the strength of near-surface baroclinicity. Composited anomalies in the monthly-mean wind at various pressure levels based on the signals in the EOFs show accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous near-surface baroclinicity patterns exhibit, broadly speaking, structures anticipated from simple linear theories of baroclinic instability, and suggest a tendency for anomalous wave fluxes to accelerate–decelerate the surface westerly accordingly. However, the relationship between anomalous eddy fields and anomalous near-surface baroclinicity in the midwinter is not consistent with the simple linear baroclinic instability theories. Composited anomalous sea surface temperature (SST) accompanying anomalous near-surface baroclinicity often exhibits moderate values and large spatial scales in the basin, rather than large values concentrated near the oceanic fronts. In the midsummer and in some cases in cold months, however, large SST anomalies are found around the Kuroshio–Oyashio Extensions. Accompanying anomalies in the net surface heat flux, SST in the preceding and following months, and meridional eddy heat flux in the lower troposphere suggest active roles played by the ocean in generating the concomitant anomalous large-scale atmospheric state in some of these cases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3