Wintertime ocean–atmosphere interaction processes associated with the SST variability in the North Pacific subarctic frontal zone

Author:

Huang Qionghui,Fang JiabeiORCID,Tao Lingfeng,Yang Xiu-Qun

Abstract

AbstractRecent research indicates that the midlatitude oceanic frontal zones are the key regions of ocean–atmosphere interaction. The thermal condition of midlatitude ocean in frontal zones can affect the atmosphere efficiently through both diabatic heating and transient eddy feedback. In this study, the wintertime SST variability in the subarctic frontal zone (SAFZ) of the North Pacific and the associated ocean–atmosphere interaction mechanism are examined based on observational and theoretical analyses. It is found that the SAFZ-related SST anomaly is characterized as a large-scale interannual mode that can persist during the whole winter, and that its evolution is accompanied with local ocean–atmosphere interaction processes. The initial anticyclonic surface wind anomaly associated with the weakened Aleutian Low forces a large-scale warm SST anomaly in midlatitude North Pacific by driving northward Ekman flow and downward heat flux. With the increase of SST anomaly, the air-sea heat flux exchange reverses, indicating that the ocean starts to heat the atmosphere. In addition to increasing the diabatic heating, the warm SST anomaly strengthens the SST gradient in the north part of SAFZ. The low-level atmospheric baroclinicity is adjusted to synchronize with the SAFZ correspondingly due to oceanic thermal influence, causing change of transient eddy activities. Though all the ocean-induced diabatic heating, transient eddy heating and transient eddy vorticity forcing are enhanced over SAFZ, the last physical process plays the most important role in shifting and maintaining the equivalent barotropic atmospheric circulation anomalies. Therefore, the ocean–atmosphere interaction provides a mechanism for the development and maintenance of SAFZ-related anomalies of the North Pacific ocean–atmosphere system throughout the winter.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3