Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility

Author:

Kollias Pavlos1,Albrecht Bruce2

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida

Abstract

Abstract Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2–3 km of the earth’s atmosphere over vast areas of the oceans. In this study, a long record of profiling cloud radar observations at the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) at Nauru Island is used to investigate cloud vertical air motion statistics over an 8-yr observing period. Appropriate processing of the observed low radar reflectivities provides radar volume samples that contain only small cloud droplets; thus, the Doppler velocities are used as air motion tracers. The technique is applied to shallow boundary layer clouds (less than 1000 m thick) during the 1999–2007 period when radar data are available. Using the boundary layer winds from the soundings obtained at the Nauru ACRF, the fair-weather cumuli fields are classified in easterly and westerly boundary layer wind regimes. This distinction is necessary to separate marine-forced (westerlies) from land-forced (easterlies) shallow clouds because of a well-studied island effect at the Nauru ACRF. The two regimes exhibit large diurnal differences in cloud fraction and cloud dynamics as manifested by the analysis of the hourly averaged vertical air motion statistics. The fair-weather cumuli fields associated with easterlies exhibit a strong diurnal cycle in cloud fraction and updraft strength and fraction, indicating a strong influence of land-forced clouds. In contrast over the fair-weather cumuli with oceanic origin, land-forced clouds are characterized by uniform diurnal cloudiness and persistent updrafts at the cloud-base level. This study provides a unique observational dataset appropriate for testing fair-weather cumulus mass flux and turbulence parameterizations in numerical models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3