Statistics on High-Cloud Areas and Their Sensitivities to Cloud Microphysics Using Single-Cloud Experiments

Author:

Satoh Masaki1,Matsuda Yuya2

Affiliation:

1. Center for Climate System Research, University of Tokyo, Kashiwa, and Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan

2. Center for Climate System Research, University of Tokyo, Kashiwa, Japan

Abstract

Abstract Statistics on high-altitude cloud areas associated with deep cumulus clouds and their sensitivities to cloud microphysics are studied in the framework of single-cloud experiments with an explicit cloud system–resolving model. A comprehensive six-category single-moment bulk cloud microphysics scheme is used to investigate parameter dependency. High-cloud areas are defined by the threshold values of the outgoing longwave radiation, and probability distribution functions of high-cloud areas are obtained. First, resolution dependencies on grid sizes of approximately 3.5, 7, and 14 km are examined. It is found that although quantitative differences are confirmed, diurnal variations in high-cloud covers are similarly captured by all three experiments conducted. The main focus of the sensitivity experiments of cloud microphysics is on the fall speed and number concentration, or mean radius, of ice particles. The results clearly show that the sum of snow and cloud ice amounts is closely related to high-cloud covers. Among the number of experiments conducted, one interesting result is that the intercept parameters of snow and graupel have opposite effects on high-cloud covers. As the intercept parameter of graupel increases, the graupel amount increases because of an increase in the accretion rate of cloud water by graupel, which results in a decrease in the amount of snow and hence a decrease in high-cloud covers. This implies that a greater production of graupel leads to an increase in precipitation efficiency.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference67 articles.

1. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models.;Bony;Geophys. Res. Lett.,2005

2. An energy-balance analysis of deep convective self-aggregation above uniform SST.;Bretherton;J. Atmos. Sci.,2005

3. Resolution requirements for the simulation of deep moist convection.;Bryan;Mon. Wea. Rev.,2003

4. A one-dimensional time-dependent cloud model.;Chen;J. Meteor. Soc. Japan,2002

5. Simulating global clouds, past, present, and future.;Collins,2009

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3