A Two-Tier Statistical Forecast Method for Agricultural and Resource Management Simulations

Author:

Mauget Steven A.1,Ko Jonghan2

Affiliation:

1. Plant Stress and Water Conservation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Lubbock, Texas

2. Texas Agricultural Experiment Station at Uvalde, Uvalde, Texas

Abstract

Abstract Simple phase schemes to predict seasonal climate based on leading ENSO indicators can be used to estimate the value of forecast information in agriculture and watershed management, but may be limited in predictive skill. Here, a simple two-tier statistical method is used to hindcast seasonal precipitation over the continental United States, and the resulting skill is compared with that of ENSO phase systems based on Niño-3 sea surface temperature anomaly (SSTA) and Southern Oscillation index (SOI) persistence. The two-tier approach first predicts Niño-3 winter season SSTA, and then converts those predictions to categorical precipitation hindcasts via a simple phase translation process. The hindcasting problem used to make these comparisons is relevant to winter wheat production over the central United States. Thus, given the state of seasonal SOI and Niño-3 indicators defined before August, the goal is to predict the tercile category of the following November–March precipitation. Generally, it was found that the methods based on either predicted or persisted winter Niño-3 conditions were skillful over areas where ENSO affects U.S. winter precipitation—that is, the Southeast and the Gulf Coast, Texas, the southern and central plains, the Southwest, Northwest, and the Ohio River valley—and that the two-tier approach based on predicted Niño-3 conditions was more likely to provide the best skill. Skill based on SOI persistence was generally lower over many of those regions and was insignificant over broad parts of the central and southwest United States, but did lead the other methods over the Ohio River valley and the northwest. A more restrictive test of leading hindcast skill showed that the skill advantages of the two-tier approach over the central and western United States were not substantial, and mainly highlighted SOI persistence’s lack of skill over the central United States and leading skill over the Ohio River valley. However, two-tier hindcasts based on neural-network-predicted Niño-3 SSTA were clearly more skillful than both ENSO phase methods over areas of the Southeast. It is suggested that the relative skill advantage of the two-tier approach may be due in part to the use of arbitrary thresholds in ENSO phase systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. El Niño Southern Oscillation and Climate Variability.;Allan,1996

2. Linear statistical short-term predictive skill in the Northern Hemisphere.;Barnston;J. Climate,1994

3. A two-tiered approach to long-range climate forecasting.;Bengtsson;Science,1993

4. Global Ocean Surface Temperature Atlas “GOSTA.”.;Bottomley,1990

5. Understanding and predicting the world’s climate system.;Cane,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3