Abstract
Agro-photovoltaic systems are of interest to the agricultural industry because they can produce both electricity and crops in the same farm field. In this study, we aimed to simulate staple crop yields under agro-photovoltaic panels (AVP) based on the calibration of crop models in the decision support system for agricultural technology (DSSAT) 4.6 package. We reproduced yield data of paddy rice, barley, and soybean grown in AVP experimental fields in Bosung and Naju, Chonnam Province, South Korea, using CERES-Rice, CERES-Barley, and CROPGRO-Soybean models. A geospatial crop simulation modeling (GCSM) system, developed using the crop models, was then applied to simulate the regional variations in crop yield according to solar radiation reduction scenarios. Simulated crop yields agreed with the corresponding measured crop yields with root mean squared errors of 0.29-ton ha−1 for paddy rice, 0.46-ton ha−1 for barley, and 0.31-ton ha−1 for soybean, showing no significant differences according to paired sample t-tests. We also demonstrated that the GCSM system could effectively simulate spatiotemporal variations in crop yields due to the solar radiation reduction regimes. An additional advancement in the GCSM design could help prepare a sustainable adaption strategy and understand future food supply insecurity.
Funder
National Research Foundation of Korea
Chonnam National University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献