Cropland and rooftops: the global undertapped potential for solar photovoltaics

Author:

Yeligeti MadhuraORCID,Hu WenxuanORCID,Scholz YvonneORCID,Stegen Ronald,von Krbek KaiORCID

Abstract

Abstract The utilization of cropland and rooftops for solar photovoltaics (PVs) installation holds significant potential for enhancing global renewable energy capacity with the advantage of dual land-use. This study focuses on estimating the global area suitable for agrivoltaics (PV over crops) and rooftop PVs by employing open-access data, existing literature and simple numerical methods in a high spatial resolution of 10 km × 10 km. For agrivoltaics, the suitability is assessed with a systematic literature review on crop-dependent feasibility and profitability, especially for 18 major crops of the world. For rooftop PV, a non-linear curve-fitting method is developed, using the urban land cover to calculate the PV-suitable built-up areas. This method is then verified by comparing the results with open-access building footprints. The spatially resolved suitability assessment unveils 4.64 million km2 of global PV-usable cropland corresponding to a geographic potential of about 217 Terawatts (TW) in an optimistic scenario and 0.21 million km2 of rooftop-PV suitable area accounting for about 30.5 TW maximum installable power capacity. The estimated suitable area offers a vast playground for energy system analysts to undertake techno-economic assessments, and for technology modellers and policy makers to promote PV implementation globally with the vision of net-zero emissions in the future.

Funder

Bundesministerium für Wirtschaft und Technologie

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference164 articles.

1. Copernicus global land service: land cover 100m: collection 3;Buchhorn,2020

2. Global land cover database,2018

3. Agrivoltaics: opportunities for agriculture and the energy transition: a guideline for Germany,2020

4. The role of residential rooftop photovoltaic in long-term energy and climate scenarios;David;Appl. Energy,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3