Strong Turbulence in the Wave Crest Region

Author:

Gemmrich Johannes1

Affiliation:

1. University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract High-resolution vertical velocity profiles in the surface layer of a lake reveal the turbulence structure beneath strongly forced waves. Dissipation rates of turbulence kinetic energy are estimated based on centered second-order structure functions at 4-Hz sampling. Dissipation rates within nonbreaking wave crests are on average 3 times larger than values found at the same distance to the free surface but within the wave trough region. This ratio increases to 18 times for periods with frequent wave breaking. The depth-integrated mean dissipation rate is a function of the wave field and correlates well with the mean wave saturation in the wave band ωp ≤ ω ≤ 4ωp. It shows a clear threshold behavior in accordance with the onset of wave breaking. The initial bubble size distribution is estimated from the observed distribution of energy dissipation rates, assuming the Hinze scale being the limiting size. This model yields the slope of the size distribution, , consistent with laboratory results reported in the literature, and implies that bubble fragmentation associated with intermittent high dissipation rates is a valid mechanism for the setup of bubble size spectra.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3