Estimating Profiles of Dissipation Rate in the Upper Ocean Using Acoustic Doppler Measurements Made from Surface-Following Platforms

Author:

Zeiden Kristin1ORCID,Thomson Jim1,Girton James1

Affiliation:

1. a Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

Abstract High-resolution profiles of vertical velocity obtained from two different surface-following autonomous platforms, Surface Wave Instrument Floats with Tracking (SWIFTs) and a Liquid Robotics SV3 Wave Glider, are used to compute dissipation rate profiles ϵ(z) between 0.5 and 5 m depth via the structure function method. The main contribution of this work is to update previous SWIFT methods to account for bias due to surface gravity waves, which are ubiquitous in the near-surface region. We present a technique where the data are prefiltered by removing profiles of wave orbital velocities obtained via empirical orthogonal function (EOF) analysis of the data prior to computing the structure function. Our analysis builds on previous work to remove wave bias in which analytic modifications are made to the structure function model. However, we find the analytic approach less able to resolve the strong vertical gradients in ϵ(z) near the surface. The strength of the EOF filtering technique is that it does not require any assumptions about the structure of nonturbulent shear, and does not add any additional degrees of freedom in the least squares fit to the model of the structure function. In comparison to the analytic method, ϵ(z) estimates obtained via empirical filtering have substantially reduced noise and a clearer dependence on near-surface wind speed.

Funder

National Science Foundation

NAVSEA

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference25 articles.

1. A global perspective on Langmuir turbulence in the ocean surface boundary layer;Belcher, S.,2012

2. Turbulence scaling comparisons in the ocean surface boundary layer;Esters, L.,2018

3. Velcro measurement of turbulence kinetic energy dissipation rate;Gargett, A. E.,1999

4. Strong turbulence in the wave crest region;Gemmrich, J.,2010

5. Observations of turbulence in the ocean surface boundary layer: Energetics and transport;Gerbi, G.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3