The Effects of Tides and Oscillatory Winds on the Subtidal Inner-Shelf Cross-Shelf Circulation

Author:

Castelao Renato1,Chant Robert2,Glenn Scott2,Schofield Oscar2

Affiliation:

1. Department of Marine Sciences, The University of Georgia, Athens, Georgia

2. Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

Abstract A two-dimensional numerical model is used to investigate the effects of tidal forcing and oscillatory winds on the subtidal cross-shelf circulation on the inner shelf. Bottom topography and initial stratification are representative of the South and Middle Atlantic Bights along the U.S. east coast. Results from simulations forced by upwelling winds and no tides are consistent with previous studies of inner-shelf circulation. The inclusion of tidal forcing leads to increased mixing, larger eddy viscosity coefficients, and reduced stratification over the shallow regions, effectively reducing the wind efficiency to drive cross-shelf currents on the inner shelf. Tidally averaged cross-shelf currents are weaker compared to when no tides are considered. There is an increase in the width of the region of surface wind-driven transport divergence, which changes the cross-shelf location where upwelling occurs. Lagrangian analyses indicate that tidal forcing substantially reduces the transport of offshore waters toward the coast and increases the residence time over the inner shelf by up to 70%. Fluctuating winds with zero mean lead to a rectification of the cross-shelf flow on the inner shelf, resulting in net upwelling. The rectification occurs because the cross-shelf transport is nonzero during upwelling wind forcing (since dense water is brought to the inner shelf maintaining the stratification), but is approximately zero during downwelling winds (since surface water is forced under near-bottom water, destroying the stratification). The rectification is more clearly observed when stratification is strong, when tidal forcing is weak or absent, and when the wind fluctuates at low frequency.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3