Responses of Coastal Upwelling to Tidally Induced Bottom Friction Dynamics and Plume-Modulated Geostrophy: A Process-Oriented Modeling Study

Author:

Cheng Weicong1ORCID,Gan Jianping1ORCID

Affiliation:

1. a Department of Ocean Science and Mathematics, Hong Kong University of Science and Technology, Hong Kong, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Abstract

Abstract We used a high-resolution cross-shelf two-dimensional numerical model to investigate the response of coastal wind-driven upwelling circulation to barotropic tidal forcing and lateral buoyant discharge over a broad continental shelf. We found that the tidally amplified asymmetric friction effect arising from the interaction between tidal and subtidal currents modulated the upwelling structure across the shelf. The interaction weakened the water outcropping (upwelling) in the inner shelf due to tidally amplified mixing, but enhanced cross-shore velocity offshore due to tidally induced asymmetric friction effect and nonlinear advection. The enhanced mixing changed the density in the bottom boundary layer and subsequently in the upwelling front, which eventually weakened the geostrophic alongshore flow. The mass and stratification inputs of the lateral buoyant discharge weakened or even reversed geostrophic dynamics for alongshore and upslope transports. The reversed cross-shore density and elevation gradient induced by the buoyant influx weakened the alongshore current and the associated bottom friction effect. The upslope cross-shore transport was reduced due to weakened alongshore flow and the associated bottom Ekman transport. The mass of buoyant influx compensated for the wind-driven offshore transport in the upper layer. The upwelling could be reversed to downwelling when the transport of lateral influx exceeded the wind-driven offshore transport. The responses of upwelling circulation to tidal and lateral buoyancy forcing highlighted in this process-oriented study are fundamental for interpreting more complex wind-driven shelf circulation.

Funder

Hong Kong University of Science and Technology

Publisher

American Meteorological Society

Subject

Oceanography

Reference49 articles.

1. Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing;Allen, J. S.,1995

2. The inner shelf response to wind-driven upwelling and downwelling;Austin, J. A.,2002

3. The effects of tides and oscillatory winds on the subtidal inner-shelf cross-shelf circulation;Castelao, R.,2010

4. Wind-driven motion near inner shelf fronts;Chao, S.-Y.,1987

5. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model;Chapman, D. C.,1985

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3