Hydrometeorological Accuracy Enhancement via Postprocessing of Numerical Weather Forecasts in Complex Terrain

Author:

McCollor Doug1,Stull Roland2

Affiliation:

1. University of British Columbia, and BC Hydro Corporation, Vancouver, British Columbia, Canada

2. University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Abstract Statistical postprocessing techniques such as model output statistics are used by national weather centers to improve the skill of numerical forecasts. However, many of these techniques require an extensive database to develop, maintain, and update the postprocessed forecasts. This paper explores alternative postprocessing techniques for temperature and precipitation based on weighted-average and recursive formulations of forecast–observation paired data that do not require extensive database management, yet provide distinct error reduction over direct model output. For maximum and minimum daily temperatures, seven different postprocessing methods were tested based on direct model output error for forecast days 1–8. The methods were tested on a 1-yr series of daily temperature values averaged over 19 stations in complex terrain in southwestern British Columbia, Canada. For daily quantitative precipitation forecasts, three different postprocessing methods were tested over a 6-month wet season period. The different postprocessing methods were compared using several verification metrics, including mean error (for temperature), degree of mass balance (for precipitation), mean absolute error, and threshold error. All of the postprocessing methods improved forecast skill over direct model output. The postprocessing methods for temperature forecasts require a much shorter training period (14 days) than precipitation forecasts (40 days) to accomplish error reduction over direct model output forecasts. The postprocessing methods that weight recent error estimates most heavily perform better in the short term (days 1–4) while methods that weight recent and earlier error estimates more evenly show improving relative performance in the midterm (days 5–8). For temperature forecasts, Kalman filtering produced slightly better verification scores than the other methods. For precipitation forecasts, a 40-day moving-average weighting function and the best easy systematic estimator method produced the best degree of mass balance results, while a seasonally averaged method produced the lowest mean absolute errors and lowest threshold errors. The methods described in this paper require minimal database management or computer resources to update forecasts, and are especially viable for hydrometeorological applications that require calibrated daily temperature and precipitation forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

1. Evaluation of an orographic precipitation model.;Barstad;J. Hydrometeor.,2005

2. Rainfall-Runoff Modelling: The Primer.;Beven,2001

3. Time Series Analysis: Forecasting and Control.;Box,1976

4. Digital and Kalman Filtering: An Introduction to Discrete-Time Filtering and Optimum Linear Estimation.;Bozic,1994

5. MM5 ensemble mean precipitation forecasts in the Taiwan area for three early summer convective (mei-yu) seasons.;Chien;Wea. Forecasting,2004

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3