Sensitivity of WRF Forecasts for South Florida to Initial Conditions

Author:

Etherton Brian1,Santos Pablo2

Affiliation:

1. Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

2. National Weather Service, Miami, Florida

Abstract

Abstract This study presents results from an experiment conducted to measure the impact of locally initializing a numerical weather prediction model on that model’s ability to predict precipitation and other surface parameters. The study consisted of quantifying the impact of initializing the Weather and Research Forecast (WRF) model with the Advanced Weather Interactive Processing System (AWIPS) Local Analysis and Prediction System (LAPS) diagnostic analyses. In the experiment, WRF was run for two different initial times: 0600 and 1800 UTC. For each initial time, the model was run twice, once using LAPS for the initial conditions, and once using the North American Mesoscale model (NAM; also known as the Eta Model at the time of the experiment). The impact of the local LAPS initialization on the model forecast of surface parameters is presented. Additionally, the model’s quantitative precipitation forecast (QPF) skill is compared for three different model configurations: 1) WRF initialized with LAPS, 2) WRF initialized with NAM, and 3) the standard NAM/Eta Model. The experiment ran from 1 June 2005 to 31 July 2005. Results show that WRF forecasts initialized by LAPS have a more accurate representation of convection in the short range. LAPS-initialized forecasts also offer more accurate forecasts of 2-m temperature and dewpoint, 10-m wind, and sea level pressure, particularly in the short range. Most significantly, precipitation forecasts from WRF runs initialized by LAPS are more accurate than WRF runs initialized by NAM. WRF initialized with LAPS also demonstrates higher QPF skill than does the NAM/Eta Model, particularly in the short range when the precipitation thresholds are higher (0.25 in. in 3 h versus 0.10 in. in 3 h), and when forecasts are initialized at 0600 UTC rather than initialized at 1800 UTC.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. The LAPS wind analysis.;Albers;Wea. Forecasting,1995

2. The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature.;Albers;Wea. Forecasting,1996

3. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets.;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. The effect of using digital satellite imagery in the LAPS moisture analysis.;Birkenheuer;Wea. Forecasting,1999

5. The New NMC mesoscale Eta Model: Description and forecast examples.;Black;Wea. Forecasting,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3