Dynamics of an Abyssal Circulation Driven by Bottom-Intensified Mixing on Slopes

Author:

Callies Jörn1,Ferrari Raffaele2

Affiliation:

1. California Institute of Technology, Pasadena, California

2. Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

AbstractThe large-scale circulation of the abyssal ocean is enabled by small-scale diapycnal mixing, which observations suggest is strongly enhanced toward the ocean bottom, where the breaking of internal tides and lee waves is most vigorous. As discussed recently, bottom-intensified mixing induces a pattern of near-bottom up- and downwelling that is quite different from the traditionally assumed widespread upwelling. Here the consequences of bottom-intensified mixing for the horizontal circulation of the abyssal ocean are explored by considering planetary geostrophic dynamics in an idealized “bathtub geometry.” Up- and downwelling layers develop on bottom slopes as expected, and these layers are well described by boundary layer theory. The basin-scale circulation is driven by flows in and out of these boundary layers at the base of the sloping topography, which creates primarily zonal currents in the interior and a net meridional exchange along western boundaries. The rate of the net overturning is controlled by the up- and downslope transports in boundary layers on slopes and can be predicted with boundary layer theory.

Funder

Division of Ocean Sciences

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3