Spatiotemporal Changes in Precipitation Extremes over Canada and Their Teleconnections to Large-Scale Climate Patterns

Author:

Yang Yang1,Gan Thian Yew1,Tan Xuezhi2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada, and Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, China

Abstract

Abstract In the past few decades, there have been more extreme climate events occurring worldwide, including Canada, which has also suffered from many extreme precipitation events. In this paper, trend analysis, probability distribution functions, principal component analysis, and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation events of Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data (1950–2012) from 164 Canadian gauging stations. Several large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Pacific–North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective available potential energy (CAPE), specific humidity, and surface temperature were employed to investigate potential causes of trends in extreme precipitation. The results reveal statistically significant positive trends for most extreme precipitation indices, which means that extreme precipitation of Canada has generally become more severe since the mid-twentieth century. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominated the central Canadian Prairies. In addition, strong teleconnections are found between extreme precipitation and climate indices, but the effects of climate patterns differ from region to region. Furthermore, complex interactions of climate patterns with synoptic atmospheric circulations can also affect precipitation variability, and changes to the summer and winter extreme precipitation could be explained more by the thermodynamic impact and the combined thermodynamic and dynamic effects, respectively. The seasonal CAPE, specific humidity, and temperature are correlated to Canadian extreme precipitation, but the correlations are season dependent, which could be positive or negative.

Funder

Chinese Scholarship Council

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3