Quantifying the Annular Mode Dynamics in an Idealized Atmosphere

Author:

Hassanzadeh Pedram1ORCID,Kuang Zhiming2

Affiliation:

1. Department of Mechanical Engineering, and Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas

2. Department of Earth and Planetary Sciences, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract The linear response function (LRF) of an idealized GCM, the dry dynamical core with Held–Suarez physics, is used to accurately compute how eddy momentum and heat fluxes change in response to the zonal wind and temperature anomalies of the annular mode at the quasi-steady limit. Using these results and knowing the parameterizations of surface friction and thermal radiation in Held–Suarez physics, the contribution of each physical process (meridional and vertical eddy fluxes, surface friction, thermal radiation, and meridional advection) to the annular mode dynamics is quantified. Examining the quasigeostrophic potential vorticity balance, it is shown that the eddy feedback is positive and increases the persistence of the annular mode by a factor of more than 2. Furthermore, how eddy fluxes change in response to only the barotropic component of the annular mode, that is, vertically averaged zonal wind (and no temperature) anomaly, is also calculated similarly. The response of eddy fluxes to the barotropic-only component of the annular mode is found to be drastically different from the response to the full (i.e., barotropic + baroclinic) annular mode anomaly. In the former, the eddy generation is significantly suppressed, leading to a negative eddy feedback that decreases the persistence of the annular mode by nearly a factor of 3. These results suggest that the baroclinic component of the annular mode anomaly, that is, the increased low-level baroclinicity, is essential for the persistence of the annular mode, consistent with the baroclinic mechanism but not the barotropic mechanism proposed in the previous studies.

Funder

Division of Atmospheric and Geospace Sciences

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

1. The role of momentum fluxes in shaping the life cycle of a baroclinic wave;Balasubramanian;J. Atmos. Sci.,1997

2. Effect of latitude on the persistence of eddy-driven jets;Barnes;Geophys. Res. Lett.,2010

3. On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability;Boljka;J. Atmos. Sci.,2018

4. Organization of storm track anomalies by recurring low-frequency circulation anomalies;Branstator;J. Atmos. Sci.,1995

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3