Parameterization of Directional Absorption of Orographic Gravity Waves and Its Impact on the Atmospheric General Circulation Simulated by the Weather Research and Forecasting Model

Author:

Xu Xin1,Xue Ming2,Teixeira Miguel A. C.3,Tang Jianping1,Wang Yuan1

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

2. Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

3. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractIn this work, a new parameterization scheme is developed to account for the directional absorption of orographic gravity waves (OGWs) using elliptical mountain-wave theory. The vertical momentum transport of OGWs is addressed separately for waves with different orientations through decomposition of the total wave momentum flux (WMF) into individual wave components. With the new scheme implemented in the Weather Research and Forecasting (WRF) Model, the impact of directional absorption of OGWs on the general circulation in boreal winter is studied for the first time. The results show that directional absorption can change the vertical distribution of OGW forcing, while maintaining the total column-integrated forcing. In general, directional absorption inhibits wave breaking in the lower troposphere, producing weaker orographic gravity wave drag (OGWD) there and transporting more WMF upward. This is because directional absorption can stabilize OGWs by reducing the local wave amplitude. Owing to the increased WMF from below, the OGWD in the upper troposphere at midlatitudes is enhanced. However, in the stratosphere of mid- to high latitudes, the OGWD is still weakened due to greater directional absorption occurring there. Changes in the distribution of midlatitude OGW forcing are found to weaken the tropospheric jet locally and enhance the stratospheric polar night jet remotely. The latter occurs as the adiabatic warming (associated with the OGW-induced residual circulation) is increased at midlatitudes and suppressed at high latitudes, giving rise to stronger thermal contrast. Resolved waves are likely to contribute to the enhancement of polar stratospheric winds as well, because their upward propagation into the high-latitude stratosphere is suppressed.

Funder

National Natural Science Foundation of China

Major Research Plan

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3