Accounting for the three‐dimensional nature of mountain waves: Parametrising partial critical‐level filtering

Author:

van Niekerk A.12ORCID,Vosper S.B.1,Teixeira M.A.C.3ORCID

Affiliation:

1. Foundation Science, Met Office Exeter UK

2. Research Department European Centre for Medium‐Range Weather Forecasts Reading UK

3. Meteorology Department University of Reading Berkshire UK

Abstract

Gravity waves generated by mountains are multiscale and three‐dimensional. Current orographic gravity wave drag parametrisation schemes assume that the waves are two‐dimensional, varying only in the vertical and along one horizontal direction. These schemes, therefore, do not represent the process of partial critical‐level filtering, whereby a portion of the wave spectrum is saturated where the winds parallel to the wavevectors become small. This results in an unrealistic vertical distribution of the momentum flux and forcing of the waves on the mean flow. In this paper, a method of accounting for partial critical‐level filtering in an orographic gravity wave drag parametrisation using the full spectrum of realistic topography is presented. This is achieved through binning of the expression for linear hydrostatic surface stresses, computed using Fourier transforms of the subgrid orographic heights within model grid boxes, into wavevector directions. The parametrisation is compared with idealised nonlinear simulations of flow over complex topography and is shown to perform well as the number of wavevector direction bins is increased. Implementation of the scheme into the Met Office Unified Model is tested using short‐range 5‐day forecasts. As is found from idealised simulations, the binned scheme leads to less forcing in the troposphere and increased forcing in the stratosphere within the model. The binned scheme is shown to alleviate biases in the upper stratosphere, between 45 and 65 km, as well as having significant local effects in the troposphere.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3