Evolution of an Axisymmetric Tropical Cyclone before Reaching Slantwise Moist Neutrality

Author:

Peng Ke1ORCID,Rotunno Richard2,Bryan George H.2,Fang Juan3

Affiliation:

1. Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Science, Nanjing University, Nanjing, China, and National Center for Atmospheric Research, Boulder, Colorado

2. National Center for Atmospheric Research, Boulder, Colorado

3. Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Science, Nanjing University, Nanjing, China

Abstract

Abstract In a previous study, the authors showed that the intensification process of a numerically simulated axisymmetric tropical cyclone (TC) can be divided into two periods denoted by “phase I” and “phase II.” The intensification process in phase II can be qualitatively described by Emanuel’s intensification theory in which the angular momentum (M) and saturated entropy (s*) surfaces are congruent in the TC interior. During phase I, however, the M and s* surfaces evolve from nearly orthogonal to almost congruent, and thus, the intensifying simulated TC has a different physical character as compared to that found in phase II. The present work uses a numerical simulation to investigate the evolution of an axisymmetric TC during phase I. The present results show that sporadic, deep convective annular rings play an important role in the simulated axisymmetric TC evolution in phase I. The convergence in low-level radial (Ekman) inflow in the boundary layer of the TC vortex, together with the increase of near-surface s* produced by sea surface fluxes, leads to episodes of convective rings around the TC center. These convective rings transport larger values of s* and M from the lower troposphere upward to the tropopause; the locally large values of M associated with the convective rings cause a radially outward bias in the upper-level radial velocity and an inward bias in the low-level radial velocity. Through a repetition of this process, the pattern (i.e., phase II) gradually emerges. The role of internal gravity waves related to the episodes of convection and the TC intensification process during phase I is also discussed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research advances on internal processes affecting tropical cyclone intensity change from 2018–2022;Tropical Cyclone Research and Review;2023-03

2. References;Tropical Cyclones;2023

3. Emanuel's intensification theories;Tropical Cyclones;2023

4. Typhoon Track, Intensity, and Structure: From Theory to Prediction;Advances in Atmospheric Sciences;2022-10-02

5. Supergradient Winds in Simulated Tropical Cyclones;Journal of the Atmospheric Sciences;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3