Role of Nonlinear Atmospheric Response to SST on the Asymmetric Transition Process of ENSO

Author:

Ohba Masamichi1,Ueda Hiroaki2

Affiliation:

1. Terrestrial Environment Research Center, University of Tsukuba, Tsukuba, Japan

2. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

Abstract

Abstract Physical processes that are responsible for the asymmetric transition processes between El Niño and La Niña events are investigated by using observational data and physical models to examine the nonlinear atmospheric response to SST. The air–sea coupled system of ENSO is able to remain in a weak, cold event for up to 2 yr, while the system of a relatively warm event turns into a cold phase. Through analysis of the oceanic observational data, it is found that there is a strong difference in thermocline variations in relation to surface zonal wind anomalies in the equatorial Pacific (EP) during the mature-to-decaying phase of ENSO. The atmospheric response for the warm phase of ENSO causes a rapid reduction of the EP westerlies in boreal winter, which play a role in hastening the following ENSO transition through the generation of upwelling oceanic Kelvin waves. However, the anomalous EP easterlies in the cold phase persist to the subsequent spring, which tends to counteract the turnabout from the cold to warm phase of ENSO. A suite of idealized atmospheric general circulation model (AGCM) experiments are performed by imposing two different ENSO-related SST anomalies, which have equal amplitudes but opposite signs. The nonlinear climate response in the AGCM is found at the mature-to-decaying phase of ENSO that closely resembles the observations, including a zonal and meridional shift in the equatorial positions of the atmospheric wind. By using a simple ocean model, it is determined that the asymmetric responses of the equatorial zonal wind result in different recovery times of the thermocline in the eastern Pacific. Thus, the differences in transition processes between the warm and cold ENSO event are fundamentally due to the nonlinear atmospheric response to SST, which originates from the distribution of climatological SST and its seasonal changes. By including the asymmetric wind responses the intermediate air–sea coupled model herein demonstrates that the essential elements of the redevelopment of La Niña arise from the nonlinear atmospheric response to SST anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3