Greenland’s Pressure Drag and the Atlantic Storm Track

Author:

Jung Thomas1,Rhines Peter B.2

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, United Kingdom

2. University of Washington, Seattle, Washington

Abstract

Abstract Some effects of Greenland on the Northern Hemisphere wintertime circulation are discussed. Inviscid pressure drag on Greenland’s slopes, calculated from reanalysis data, is related to circulation patterns. Greenland lies north of the core of the tropospheric westerly winds. Yet strong standing waves, which extend well into the stratosphere, produce a trough/ridge system with jet stream lying close to Greenland, mean Icelandic low in its wake, and storm track that interacts strongly with its topography. In the lower troposphere, dynamic height anomalies associated with strongly easterly pressure drag on the atmosphere are quite localized in space and relatively short-lived compared to upper levels, yet they involve a hemispheric-scale dislocation of the stratospheric polar vortex. It is a two-scale problem, however; the high-pass time-filtered part of the height field, responsible for 73% of the pressure drag, is quite different, and expresses propagating cyclonic development in the Atlantic storm track. Eliassen–Palm flux (EP flux) analysis shows that the atmospheric response is (counterintuitively) an acceleration of the westerly winds. The hemispheric influence is consistent with the model results of Junge et al. suggesting that Greenland affects the stationary waves in winter. This discussion shows that Greenland is not a simple “stirring rod” in the westerly circulation, yet involvement of Greenland’s topography with the shape, form, and intensity of the storm track is strong. Interaction of traveling storms, the jet stream, and the orographic wake frequently leads to increase of the lateral scale such that cyclonic system expands to the size of Greenland itself (∼2500 km). Using the global ECMWF general circulation model, the authors explore the effect of model resolution on these circulations. Statistically, in two case studies, and in higher-resolution global models at TL255 to TL799 resolution, intense tip jet, hydraulic downslope jet, and gravity wave radiation appear in strong flow events, in accord with the work of Doyle and Shapiro. Three-dimensional particle trajectories and vorticity maps show the nature and intensity of the summit-gap flow. Cyclonic systems in the lee of Greenland are strongly affected by the downslope jet. Penetration of the Arctic Basin by cyclonic systems arises from this source region, and the amplitude of the pressure drag is enhanced at high resolution. At the higher resolutions, storm-track analysis verifies the splitting of the storm track by Greenland with a substantial minority of storms moving northward through Baffin Bay. Finally, analysis of 20 winters of 40-yr ECMWF Re-Analysis (ERA-40) reforecasts shows little evidence that negative pressure-drag events are followed by anomalously large forecast errors over Europe, throughout the forecast. Forecast skill for the pressure drag is surprisingly good, with a correlation of 0.65 at 144 h.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference47 articles.

1. Low-level potential vorticity and cyclogenesis to the lee of the Alps.;Aebischer;J. Atmos. Sci.,1998

2. Agnew, T., J.Vandeweghe, and P.Yu, 2005: Estimating sea-ice transport using the Advanced Sensor Microwave Imager (AMSR). Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 9.1.

3. Stratospheric harbingers of anomalous weather regimes.;Baldwin;Science,2001

4. Circumglobal teleconnections, the jet stream waveguide and the North Atlantic Oscillation.;Branstator;J. Climate,2002

5. Wintertime surface winds over the Greenland ice sheet.;Bromwich;Mon. Wea. Rev.,1996

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Common Characteristics of Antarctic Tropopause Polar Vortices;Journal of the Atmospheric Sciences;2022-10-06

2. Characteristics of long-track tropopause polar vortices;Weather and Climate Dynamics;2022-03-10

3. Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales;Bulletin of the American Meteorological Society;2016-09-01

4. Impact of cyclonic and anticyclonic activity on Greenland ice sheet surface mass balance variation during 1980-2013;International Journal of Climatology;2015-12-08

5. Aspects of ECMWF model performance in polar areas;Quarterly Journal of the Royal Meteorological Society;2014-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3