Affiliation:
1. Marine Meteorology Division, Naval Research Laboratory, Monterey, California
2. American Society for Engineering Education, Washington, D.C.
Abstract
AbstractDuring the spring and summer months, the greater Caribbean region typically experiences pulses of moderate to heavy episodes of airborne African dust concentrations that originate over the Sahara Desert and propagate westward across the tropical North Atlantic basin. These dust episodes are often contained within the Saharan air layer (SAL), an elevated air mass (between 850–500 hPa) marked by very dry and warm conditions within the lowest levels. During its westward transport, the SAL’s distinct environmental characteristics can persist well into the Gulf of Mexico and southern United States. As a result, the Caribbean population is susceptible to airborne dust levels that often exceed healthy respiratory limits. One of the major responsibilities within the National Weather Service in San Juan, Puerto Rico (NWS-PR), is preparing the public within their area of responsibility (AOR) for such events. The Naval Research Laboratory Marine Meteorology Division (NRL-MMD) is sponsored by the National Oceanic and Atmospheric Administration (NOAA) to support the NWS-PR by providing them with an invaluable “one stop shop” web-based resource (hereafter SAL-WEB) that is designed to monitor these African dust events. SAL-WEB consists of near-real-time output generated from ground-based instruments, satellite-derived imagery, and dust model forecasts, covering the extent of dust from North Africa, westward across the Atlantic basin, and extending into Mexico. The products within SAL-WEB would serve to augment the Advanced Weather Interactive Processing System (AWIPS-II) infrastructure currently in operation at the NWS-PR. The goal of this article is to introduce readers to SAL-WEB, along with current and future research underway to provide improvements in African dust prediction capabilities.
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献