Modeling of Cloud Microphysics: Can We Do Better?

Author:

Grabowski Wojciech W.1,Morrison Hugh1,Shima Shin-Ichiro2,Abade Gustavo C.3,Dziekan Piotr3,Pawlowska Hanna3

Affiliation:

1. Mesoscale and Microscale Meteorology Laboratory, NCAR, Boulder, Colorado

2. University of Hyogo, and RIKEN Center for Computational Science, Kobe, Japan

3. Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Abstract

Abstract Representation of cloud microphysics is a key aspect of simulating clouds. From the early days of cloud modeling, numerical models have relied on an Eulerian approach for all cloud and thermodynamic and microphysics variables. Over time the sophistication of microphysics schemes has steadily increased, from simple representations of bulk masses of cloud and rain in each grid cell, to including different ice particle types and bulk hydrometeor concentrations, to complex schemes referred to as bin or spectral schemes that explicitly evolve the hydrometeor size distributions within each model grid cell. As computational resources grow, there is a clear trend toward wider use of bin schemes, including their use as benchmarks to develop and test simplified bulk schemes. We argue that continuing on this path brings fundamental challenges difficult to overcome. The Lagrangian particle-based probabilistic approach is a practical alternative in which the myriad of cloud and precipitation particles present in a natural cloud is represented by a judiciously selected ensemble of point particles called superdroplets or superparticles. The advantages of the Lagrangian particle-based approach when compared to the Eulerian bin methodology are explained, and the prospects of applying the method to more comprehensive cloud simulations—for instance, targeting deep convection or frontal cloud systems—are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3