Challenges to Understanding Extreme Weather Changes in Lower Income Countries

Author:

Otto Friederike E. L.1,Harrington Luke1,Schmitt Katharina1,Philip Sjoukje2,Kew Sarah2,van Oldenborgh Geert Jan2,Singh Roop3,Kimutai Joyce4,Wolski Piotr5

Affiliation:

1. Environmental Change Institute, University of Oxford, Osford, United Kingdom

2. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

3. Red Cross Red Crescent Climate Centre, The Hague, Netherlands

4. African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa, and Kenya Meteorological Department, Nairobi, Kenya

5. African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa

Abstract

AbstractThe science of event attribution has emerged to routinely answer the question whether and to what extent human-induced climate change altered the likelihood and intensity of recently observed extreme weather events. In Europe a pilot program to operationalize the method started in November 2019, highlighting the demand for timely information on the role of climate change when it is needed most: in the direct aftermath of an extreme event. Independent of whether studies are provided operationally or as academic studies, the necessity of good observational data and well-verified climate models imply most attributions are currently made for highly developed countries only. Current attribution assessments therefore provide very little information about those events and regions where the largest damages and socio-economic losses are incurred. Arguably, these larger damages signify a much greater need for information on how the likelihood and intensity of such high-impact events have been changing and are likely to change in a warmer world. In short, why do we not focus event attribution research efforts on the whole world, and particularly events in the developing world? The reasons are not just societal and political but also scientific. We simply cannot attribute these events in the same probabilistic framework employed in most studies today. We outline six focus areas to lessen these barriers, but we will not overcome them in the near future.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3