Searching for the Most Extreme Temperature Events in Recent History

Author:

Cattiaux Julien1,Ribes Aurélien1,Thompson Vikki2

Affiliation:

1. Centre National de Recherches Météorologiques, Université de Toulouse, CNRS, Météo-France, Toulouse, France;

2. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

Abstract Because they are rare, extreme weather events have critical impacts on societies and ecosystems and attract public and scientific attention. The most unusual events are regularly documented as part of routine climate monitoring by meteorological services. A growing number of attribution studies also aim at quantifying how their probability has evolved under human-induced climate change. However, it is often recognized that (i) the selection of studied events is geographically uneven, and (ii) the definition of a given event, in particular, its spatiotemporal scale, is subjective, which may impact attribution statements. Here we present an original method that objectively selects, defines, and compares extreme events that have occurred worldwide in the recent years. Building on previous work, the event definition consists of automatically selecting the spatiotemporal scale that maximizes the event rarity, accounting for the nonstationary context of climate change. We then explore all years, seasons, and regions and search for the most extreme events. We demonstrate how our searching procedure can be both useful for climate monitoring over a given territory, and resolve the geographical selection bias of attribution studies. Ultimately, we provide a selection of the most exceptional hot and cold events in the recent past, among which are iconic heatwaves such as those seen in 2021 in Canada and in 2003 in Europe.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Attribution of extreme weather to anthropogenic greenhouse gas emissions: Sensitivity to spatial and temporal scales;Angélil, O.,2014

2. On the nonlinearity of spatial scales in extreme weather attribution statements;Angélil, O.,2018

3. Inference for extreme values under threshold-based stopping rules;Barlow, A. M.,2020

4. Anthropogenic contributions to the 2021 Pacific Northwest heatwave;Bercos-Hickey, E.,2022

5. The ERA5 extreme seasons explorer as a basis for research at the weather and climate interface;Boettcher, M.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3