Evaluation of the High-Resolution Rapid Refresh (HRRR) Model Using Near-Surface Meteorological and Flux Observations from Northern Alabama

Author:

Lee Temple R.1,Buban Michael1,Turner David D.2,Meyers Tilden P.3,Baker C. Bruce3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma, and NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

2. NOAA/Earth Systems Research Laboratory, Global Systems Division, Boulder, Colorado

3. NOAA/Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Abstract

Abstract The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coterminous United States has not been well studied. In the present study, we evaluated how well version 2 of the HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields and the surface energy balance at two locations in northern Alabama. We evaluated the 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and Cullman, Alabama. During the 8-month model evaluation period, from 1 September 2016 to 30 April 2017, we found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature (R2 > 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at both sites, we found that the agreement was weaker (R2 ≈ 0.7), and the root-mean-square errors were much larger than those found for the near-surface meteorological variables. These findings help motivate the need for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in future versions of the HRRR to be more physically realistic.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3