Antecedent North Pacific Jet Regimes Conducive to the Development of Continental U.S. Extreme Temperature Events during the Cool Season

Author:

Winters Andrew C.1,Bosart Lance F.1,Keyser Daniel1

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract This study considers the development of continental U.S. extreme temperature events (ETEs) during the cool season (September–May), where extreme temperatures are defined in terms of percentiles and events are defined in terms of the spatial coverage of extreme temperatures. Following their identification, ETEs are classified into geographic clusters and stratified based on the state of the North Pacific jet (NPJ) stream prior to ETE initiation using an NPJ phase diagram. The NPJ phase diagram is developed from the two leading modes of NPJ variability during the cool season. The first mode corresponds to a zonal extension or retraction of the exit region of the climatological NPJ, while the second mode corresponds to a poleward or equatorward shift of the exit region of the climatological NPJ. The projection of 250-hPa zonal wind anomalies onto the NPJ phase diagram prior to ETEs demonstrates that the preferred state and evolution of the NPJ prior to ETEs varies considerably based on the geographic location of ETE initiation and the season. Southern plains extreme warm events are an exception, however, since extreme warm events in that location most frequently initiate following a retracted NPJ during all seasons. The NPJ phase diagram is subsequently utilized to examine a synoptic-scale flow evolution highly conducive to the initiation of southern plains extreme warm events via composite analysis. The composite analysis demonstrates that a retracted NPJ supports an amplification of the upper-tropospheric flow pattern over North America, which then induces persistent lower-tropospheric warm-air advection over the southern plains prior to ETE initiation.

Funder

Division of Atmospheric and Geospace Sciences

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference86 articles.

1. Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States;Allen;Nat. Geosci.,2015

2. Patterns of wintertime jet stream variability and their relation to the storm tracks;Athanasiadis;J. Atmos. Sci.,2010

3. Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns;Barnston;Mon. Wea. Rev.,1987

4. Appalachian cold-air damming;Bell;Mon. Wea. Rev.,1988

5. Bentley, A. M. , 2018: Extratropical cyclones leading to extreme weather events over central and eastern North America. Ph.D. dissertation, University at Albany, State University of New York, 158 pp.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3