Impact of Ground-Based Remote Sensing Boundary Layer Observations on Short-Term Probabilistic Forecasts of a Tornadic Supercell Event

Author:

Hu Junjun1,Yussouf Nusrat2,Turner David D.3,Jones Thomas A.1,Wang Xuguang4

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. NOAA/OAR/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

4. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Due to lack of high spatial and temporal resolution boundary layer (BL) observations, the rapid changes in the near-storm environment are not well represented in current convective-scale numerical models. Better representation of the near-storm environment in model initial conditions will likely further improve the forecasts of severe convective weather. This study investigates the impact of assimilating high temporal resolution BL retrievals from two ground-based remote sensing instruments for short-term forecasts of a tornadic supercell event on 13 July 2015 during the Plains Elevated Convection At Night field campaign. The instruments are the Atmospheric Emitted Radiance Interferometer (AERI) that retrieves thermodynamic profiles and the Doppler lidar (DL) that measures horizontal wind profiles. Six sets of convective-scale ensemble data assimilation (DA) experiments are performed: two control experiments that assimilate conventional and WSR-88D radar observations using either relaxation-to-prior-spread (RTPS) or the adaptive inflation (AI) technique and four experiments similar to the control but that assimilate either DL or AERI or both observations in addition to all other observations that are in the control experiments. Results indicate a positive impact of AERI and DL observations in forecasting convective initiation (CI) and early evolution of the supercell storm. The experiment that employs the AI technique to assimilate BL observations in DA enhances the humidity in the near-storm environment and low-level convergence, which in turn helps forecasting CI. The forecast improvement is most pronounced during the first ~3 h. Results also indicate that the AERI observations have a larger impact compared to DL in predicting CI.

Funder

FY2016 Joint Technology Transfer Initiative Program within NOAA/OAR Office of Weather and Air Quality

NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement

AGS

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3