Lake-Effect Snowbands in Baroclinic Environments

Author:

Eipper Daniel T.1,Greybush Steven J.1,Young George S.1,Saslo Seth1,Sikora Todd D.2,Clark Richard D.2

Affiliation:

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Earth Sciences, Millersville University, Millersville, Pennsylvania

Abstract

Abstract Lake-effect snowstorms are often observed to manifest as dominant bands, commonly produce heavy localized snowfall, and may extend large distances inland, resulting in hazards and high societal impact. Some studies of dominant bands have documented concomitant environmental baroclinity (i.e., baroclinity occurring at a scale larger than the width of the parent lake), but the interaction of this baroclinity with the inland structure of dominant bands has been largely unexplored. In this study, the thermodynamic environment and thermodynamic and kinematic structure of simulated dominant bands are examined using WRF reanalyses at 3-km horizontal resolution and an innovative technique for selecting the most representative member from the WRF ensemble. Three reanalysis periods are selected from the Ontario Winter Lake-effect Systems (OWLeS) field campaign, encompassing 185 simulation hours, including 155 h in which dominant bands are identified. Environmental baroclinity is commonly observed during dominant-band periods and occurs in both the north–south and east–west directions. Sources of this baroclinity are identified and discussed. In addition, case studies are conducted for simulation hours featuring weak and strong along-band environmental baroclinity, resulting in weak and strong inland extent, respectively. These contrasting cases offer insight into one mechanism by which along-band environmental baroclinity can influence the inland structure and intensity of dominant bands: in the case with strong environmental baroclinity, inland portions of this band formed under weak instability and therefore exhibit slow overturning, enabling advection far inland under strong winds, whereas the nearshore portion forms under strong instability, and the enhanced overturning eventually leads to the demise of the inland portion of the band.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3