Applications of the Geometry-Sensitive Ensemble Mean for Lake-Effect Snowbands and Other Weather Phenomena

Author:

Seibert Jonathan J.1,Greybush Steven J.1,Li Jia2,Zhang Zhoumin3,Zhang Fuqing1

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania

3. c College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Ensembles of predictions are critical to modern weather forecasting. However, visualizing ensembles and their means in a useful way remains challenging. Existing methods of creating ensemble means do not recognize the physical structures that humans could identify within the ensemble members; therefore, visualizations for variables such as reflectivity lose important information and are difficult for human forecasters to interpret. In response, the authors create an improved ensemble mean that retains more structural information. The authors examine and expand upon the object-based Geometry-Sensitive Ensemble Mean (GEM) defined by Li and Zhang from a meteorological perspective. The authors apply low-intensity thresholding to WRF-simulated radar reflectivity images of lake-effect snowbands, tropical cyclones, and severe thunderstorms and then process them with the GEM system. Gaussian mixture model–based signatures retain the geometric structure of these phenomena and are used to compute a Wasserstein barycenter as the centroid for the ensemble; D2 clustering is employed to examine different scenarios among the ensemble members. Three types of ensemble mean image are created from the centroid of the ensemble or cluster, which each improve upon the traditional pixel-wise average in different ways, successfully capture aspects of the ensemble members’ structure, and have potential applications for future forecasting efforts. The adjusted best member is a better representative member, the Bayesian posterior mean is an improved structure-based weighted average, and the mixture density mean is an outline of the key structures in the ensemble. Each is shown to improve upon a simple arithmetic mean via quantitative comparison with observations.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3