A New Look at the Pacific Storm Track Variability: Sensitivity to Tropical SSTs and to Upstream Seeding

Author:

Orlanski Isidoro1

Affiliation:

1. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Abstract

Abstract There is a fairly well defined stationary wave and storm track response to El Niño SSTs over the Pacific. In this paper, the case is made that this response is a direct result of increased baroclinicity in the central Pacific and that changes in the stationary wave pattern farther east are primarily forced by changes in these transient eddies. There is also a lot of natural variability that is not associated with El Niño. The paper also stresses the point that much of the variability can be understood as forced by variations in the upstream seeding of the storm track. The question of whether these seeding variations should be thought of as chaotic noise or forced by identifiable mechanisms is not addressed. Thus, the claim is that the storm track variability and its feedback to the quasi-stationary circulation depends on two key parameters: mid-Pacific baroclinicity, controlled by SSTs, and the strength of the upstream seeding. The approach is to first examine the effect of storm track seeding by waves entering from the Asian continent during normal years (non-ENSO years). The results show that two mechanisms operate to distribute eddy energy along the storm track: downstream development and baroclinic development. The large effect on baroclinic development at the storm track entrance results from a combination of factors: surface baroclinicity, land–sea contrast, and strong moist fluxes from the western subtropics. Experiments show that sensitivity to the seeding amplitude is large. The larger the seeding amplitude, the closer the more intense baroclinic waves flux energy downstream to upper-level waves. These barotropic waves tend to break anticyclonically and produce a ridge in the eastern Pacific. Sensitivity to SST anomalies shows qualitative and quantitative similarity with the observed anomalies. Simulations show increased mid-Pacific baroclinicity because stronger convection in the midtropical Pacific enhances a large pool of warm air over the entire mideastern subtropical ocean. Waves with sources at the storm track entrance break anticyclonically and produce the ridge in the eastern Pacific. On the other hand, baroclinic waves generated or regenerated in the mid-Pacific tend to break cyclonically, produce a trough tendency, and reduce the eastern ridge amplitude in the Pacific–North American (PNA) sector. These results strongly suggest thatthe variability of the quasi-permanent circulation indeed could be produced by the high-frequency eddy feedback, andtwo mechanisms are primarily responsible for the forcing of the quasi-permanent circulation: downstream development from the western Pacific and the anomalous baroclinicity in the mideastern Pacific. The intensity of these counteracting forcings gives the different flavors of the El Niño response over the PNA region. Regardless of the SST anomaly strength, the PNA patterns seem unique but obviously have different intensities.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. Downstream development of baroclinic waves as inferred from regression analysis.;Chang;J. Atmos. Sci.,1993

2. On the dynamics of a storm track.;Chang;J. Atmos. Sci.,1993

3. Storm track dynamics.;Chang;J. Climate,2002

4. Sensitivity of January climate response to the magnitude and position of equatorial Pacific sea surface temperature anomalies.;Geisler;J. Atmos. Sci.,1985

5. Numerical Prediction and Dynamic Meteorology.;Haltiner,1979

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3