Towards a climatology of fog frequency in the Atacama Desert via multi-spectral satellite data and machine learning techniques

Author:

Böhm Christoph1,Schween Jan H.1,Reyers Mark1,Maier Benedikt2,Löhnert Ulrich1,Crewell Susanne1

Affiliation:

1. Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

2. Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, CERN, Geneva, Switzerland

Abstract

AbstractIn many hyper-arid ecosystems, such as the Atacama Desert, fog is the most important fresh water source. To study biological and geological processes in such water-limited regions, knowledge about the spatio-temporal distribution and variability of fog presence is necessary. In this study, in-situ measurements provided by a network of climate stations equipped, inter alia, with leaf wetness sensors are utilized to create a reference fog data set which enables the validation of satellite-based fog retrieval methods. Further, a new satellite-based fog detection approach is introduced which uses brightness temperatures measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) as input for a neural network. Such a machine learning technique can exploit all spectral information of the satellite data and represent potential non-linear relationships. Compared to a second fog detection approach based on MODIS cloud top height retrievals, the neural network reaches a higher detection skill (Heidke skill score of 0.56 compared to 0.49). A suitable representation of temporal variability on subseasonal time scales is provided with correlations mostly greater than 0.7 between fog occurrence time series derived from the neural network and the reference data for individual climate stations, respectively. Furthermore, a suitable spatial representativity of the neural network approach to expand the application to the whole region is indicated. Three-year averages of fog frequencies reveal similar spatial patterns for the austral winter season for both approaches. However, differences are found for the summer and potential reasons are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3