Evapotranspiration Climatology of Indiana Using In Situ and Remotely Sensed Products

Author:

Niyogi Dev12,Jamshidi Sajad1,Smith David3,Kellner Olivia4

Affiliation:

1. a Department of Agronomy, Purdue University, West Lafayette, Indiana

2. b Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana

3. c Indiana Department of Natural Resources, Division of Water, Indianapolis, Indiana

4. d Climate Impact Company, Plymouth, Massachusetts

Abstract

AbstractAn intercomparison of multiresolution evapotranspiration (ET) datasets with reference to ground-based measurements for the development of regional reference (ETref) and actual (ETa) evapotranspiration maps over Indiana is presented. A representative ETref equation for the state is identified by evaluating 10 years of in situ measurements (2009–19). A statewide ETref climatology is developed using the ETref equation and high-resolution surface meteorological data from the gridded surface meteorological dataset (gridMET). For ETa analyses, MODIS, Simplified Surface Energy Balance Operational dataset (SSEBop), Global Land Evaporation Amsterdam Model (GLEAM) (versions 3.3a and 3.3b), and NLDAS (Noah and VIC) datasets are evaluated using AmeriFlux data. Thirty years of rainfall data from Climate Hazards Group Infrared Precipitation with Station Data Rainfall (CHIRPS) are used with the ET datasets to develop effective precipitation fields. Results show that the standardized Penman–Monteith equation performs as the best ETref equation with median symmetric accuracy (MSA) of 0.37, Taylor’s skill score (TSC) of 0.89, and r2 = 0.83. The analysis shows that the gridMET dataset overestimates wind speed and requires adjustment before a series of statewide ETref climatology maps are generated (1990–2020). For ETa, the MODIS and GLEAM (3.3b) datasets outperform the rest, with MSA = 0.5, TSC = 0.8, and r2 = 0.8. The state ETa dataset is generated using all MODIS data from 2003 and blending the MODIS data with GLEAM (3.3b) to cover data unavailability. Using the top-performing datasets, annual ETref for Indiana is computed as 1110 mm, ETa as 708 mm, and precipitation as 1091 mm. A marginal increasing climatological trend is found for Indiana’s ETref (0.013 mm yr−1) while ETa is found to be relatively stable. The state’s water availability, defined as rainfall minus ETa, has remained positive and stable at 0.99 mm day−1 (annual magnitude of +3820 mm).

Funder

National Institute of Food and Agriculture

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3