Estimating Extremes in Transient Climate Change Simulations

Author:

Kharin Viatcheslav V.1,Zwiers Francis W.1

Affiliation:

1. Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, Victoria, British Columbia, Canada

Abstract

Abstract Changes in temperature and precipitation extremes are examined in transient climate change simulations performed with the second-generation coupled global climate model of the Canadian Centre for Climate Modelling and Analysis. Three-member ensembles were produced for the time period 1990–2100 using the IS92a, A2, and B2 emission scenarios of the Intergovernmental Panel on Climate Change. The return values of annual extremes are estimated from a fitted generalized extreme value distribution with time-dependent location and scale parameters by the method of maximum likelihood. The L-moment return value estimates are revisited and found to be somewhat biased in the context of transient climate change simulations. The climate response is of similar magnitude in the integrations with the IS92a and A2 emission scenarios but more modest for the B2 scenario. Changes in temperature extremes are largely associated with changes in the location of the distribution of annual extremes without substantial changes in its shape over most of the globe. Exceptions are regions where land and ocean surface properties change drastically, such as the regions that experience sea ice and snow cover retreat. Globally averaged changes in warm extremes are comparable to the corresponding changes in annual mean daily maximum temperature, while globally averaged cold extremes warm up faster than annual mean daily minimum temperature. There are considerable regional differences between the magnitudes of changes in temperature extremes and the corresponding annual means. Changes in precipitation extremes are due to changes in both the location and scale of the extreme value distribution and exceed substantially the corresponding changes in the annual mean precipitation. Generally speaking, the warmer model climate becomes wetter and hydrologically more variable. The probability of precipitation events that are considered extreme at the beginning of the simulations is increased by a factor of about 2 by the end of the twenty-first century.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3