Skill, Predictability, and Cluster Analysis of Atlantic Tropical Storms and Hurricanes in the ECMWF Monthly Forecasts

Author:

Camargo Suzana J.1ORCID,Vitart Frédéric2,Lee Chia-Ying1,Tippett Michael K.3

Affiliation:

1. a Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. b European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

3. c Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Abstract

Abstract In this paper we analyze Atlantic Ocean hurricane activity in the European Centre for Medium-Range Weather Forecasts (ECMWF) monthly hindcasts for the period 1998–2017. The main climatological characteristics of Atlantic tropical cyclone (TC) activity are considered at different lead times and across the entire ECMWF ensemble using three diagnostic variables: the number of tropical cyclones, the number of hurricanes, and the accumulated cyclone energy. The impacts of changing horizontal resolution and stochastic parameterization are clear in these diagnostic variables. The model skill scores for the number of tropical cyclones and accumulated cyclone energy by lead time are also computed. Using cluster analysis, we compare the characteristics of the forecast TC tracks with observations. Although four of the ECMWF clusters have similar characteristics to observed ones, one of the ECMWF clusters does not have a corresponding one in observations. We consider the predictability of each of these clusters, as well the modulation of their frequency by climate modes, such as the El Niño–Southern Oscillation and the Madden–Julian oscillation, taking advantage of the very large sample size of TC datasets in these hindcasts.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3