A Quantile-Conserving Ensemble Filter Framework. Part I: Updating an Observed Variable

Author:

Anderson Jeffrey L.1

Affiliation:

1. a NCAR/CISL/TDD/DAReS, Boulder, Colorado

Abstract

Abstract A general framework for deterministic univariate ensemble filtering is presented. The framework fits a continuous prior probability density function (PDF) to the prior ensemble. A functional representation for the observation likelihood is combined with the prior PDF to get a continuous analysis (posterior) PDF. Cumulative distribution functions for the prior and analysis are also required. The key innovation is that an analysis ensemble is computed so that the quantile of each ensemble member is the same as its prior quantile. Many choices for the prior PDF family and the likelihood function are described. A choice of normal prior with normal likelihood is equivalent to the ensemble adjustment Kalman filter. Some other choices for the prior include gamma, inverse gamma, beta, beta prime, lognormal, and exponential distributions. Both prior distributions and likelihoods can be defined over a set of intervals giving additional flexibility that can be used to implement methods like a Huber likelihood for observations with occasional outliers. Priors and likelihoods can also be defined as sums of distributions allowing choices like bivariate normals or kernel filters. Empirical distributions, for instance piecewise linear approximations to arbitrary PDFs and functions can be used. Another empirical choice leads to the rank histogram filter. Results here are univariate and can be used to compute increments for observed variables or marginal distributions for any variable for a reanalysis. Linear regression of increments can be used to update state variables in a serial filter to build a comprehensive data assimilation system. Part 2 will discuss other methods for extending the framework to multivariate data assimilation. Significance Statement Data assimilation is used to combine information from model forecasts with subsequent observations to obtain better estimates of the current state of the atmosphere or other parts of the Earth system. Ensemble data assimilation uses a number of forecasts to get more information about uncertainty. A new method allows much more flexibility in the assumptions that must be made when doing ensemble data assimilation. As an example, the method can be better for quantities that are bounded like the amount of an atmospheric trace pollutant.

Funder

National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3