Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems

Author:

Bocquet M.,Sakov P.

Abstract

Abstract. The finite-size ensemble Kalman filter (EnKF-N) is an ensemble Kalman filter (EnKF) which, in perfect model condition, does not require inflation because it partially accounts for the ensemble sampling errors. For the Lorenz '63 and '95 toy-models, it was so far shown to perform as well or better than the EnKF with an optimally tuned inflation. The iterative ensemble Kalman filter (IEnKF) is an EnKF which was shown to perform much better than the EnKF in strongly nonlinear conditions, such as with the Lorenz '63 and '95 models, at the cost of iteratively updating the trajectories of the ensemble members. This article aims at further exploring the two filters and at combining both into an EnKF that does not require inflation in perfect model condition, and which is as efficient as the IEnKF in very nonlinear conditions. In this study, EnKF-N is first introduced and a new implementation is developed. It decomposes EnKF-N into a cheap two-step algorithm that amounts to computing an optimal inflation factor. This offers a justification of the use of the inflation technique in the traditional EnKF and why it can often be efficient. Secondly, the IEnKF is introduced following a new implementation based on the Levenberg-Marquardt optimisation algorithm. Then, the two approaches are combined to obtain the finite-size iterative ensemble Kalman filter (IEnKF-N). Several numerical experiments are performed on IEnKF-N with the Lorenz '95 model. These experiments demonstrate its numerical efficiency as well as its performance that offer, at least, the best of both filters. We have also selected a demanding case based on the Lorenz '63 model that points to ways to improve the finite-size ensemble Kalman filters. Eventually, IEnKF-N could be seen as the first brick of an efficient ensemble Kalman smoother for strongly nonlinear systems.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3